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Alors,
lim

n→+∞
∥Fn − F∥∞ = 0 P − p.s.

Démonstration. Commençons d’abord par expliquer comment on peut, en pra-
tique, calculer la quantité ∥Fn −F∥∞. Cela assurera en particulier la mesura-
bilité de ∥Fn − F∥∞.

Réordonnons les nombres X1, . . . , Xn en X(1), X(2), . . . , X(n) avec X(1) ≤
X(2) ≤ · · · ≤ X(n) (c’est ce que l’on appelle une statistique d’ordre). Les fonc-
tions ainsi définies sont bien des variables aléatoires puisque l’on a l’identité

{X(k) ≤ t} =
{

n∑
i=1

1[0,t](Xi) ≥ k

}
.

Pour 0 ≤ k ≤ n, la fonction Fn − F vaut k
n − F (t) sur [X(k), X(k+1)[, avec

la convention X(0) = −∞ et X(n+1) = +∞. Comme Fn − F est décroissante
et continue à droite sur [X(k), X(k+1)[, on a

sup
t∈[X(k),X(k+1)[

∣∣∣∣kn − F (t)
∣∣∣∣ = max

(∣∣∣∣kn − F (X(k))
∣∣∣∣ , ∣∣∣∣kn − F (X(k+1)−0)

∣∣∣∣) .
Ici, F (x−0) désigne la limite de F en x à gauche. Comme Fn et F ont les
mêmes limites en −∞ et en +∞, on a simplement

∥Fn − F∥∞ = max
(

max
1≤k≤n

∣∣∣∣kn − F (X(k))
∣∣∣∣ , max

1≤k≤n

∣∣∣∣k − 1
n

− F (X(k)−0)
∣∣∣∣) ,

ce qui montre que ∥Fn − F∥∞ est bien mesurable. On peut aller plus loin : le
même raisonnement que ci-dessus montre que l’application

ψn : (x1, . . . , xn) 7→ sup
x∈R

∣∣∣∣∣F (x) − 1
n

n∑
k=1

1]−∞,x](xk)
∣∣∣∣∣ .

est (Rn,B(Rn)) − (R,B(R)) mesurable et on a ∥Fn − F∥∞ = ψn(X1, . . . , Xn).
Ainsi P(∥Fn − F∥∞ → 0) = PX(ψn(Π1, . . . ,Πn) → 0) : ainsi le résultat re-
cherché ( P(∥Fn − F∥∞ → 0) = 1) est une propriété de la loi du processus
(Xn)n≥1 : pour montrer que le théorème est vrai, on peut donc choisir les
Xn sur l’espace de notre choix, pourvu qu’elles forment une suite de variables
aléatoires identiquement distribuées de loi µ.

Soit donc (Un)n≥1 une suite de variables aléatoires indépendantes suivant
la loi uniforme sur [0, 1]. D’après le théorème 5.6.1, les variables aléatoires
Xk = Q∗(Uk), avec Q∗(u) = inf{x ∈ R; 1 − F (x) ≤ u} forment un échantillon



306 CHAPITRE 13. STATISTIQUE

de la loi µ. On a

∥Fn − F∥∞ = sup
x∈R

∣∣∣∣∣ 1n
n∑

k=1
1]−∞,x](Xk) − F (x)

∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣ 1n
n∑

k=1
1]−∞,x](Q∗(Uk)) − F (x)

∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣ 1n
n∑

k=1
1]−∞,F (x)](1−Uk) − F (x)

∣∣∣∣∣
≤ sup

y∈[0,1]

∣∣∣∣∣ 1n
n∑

k=1
1]−∞,y](U ′

k) − y

∣∣∣∣∣ ,
où on a posé U ′

k = 1 − Uk. Les U ′
k sont encore des variables indépendantes

suivant la loi uniforme sur [0, 1]. Notons que la dernière inégalité est en réalité
une égalité lorsque F est continue. Ce résultat sera réutilisé plus tard.

Ainsi on est ramené à étudier le cas où µ est la loi uniforme sur [0, 1],
puisque 1

n

∑n
k=1 1]−∞,y](U ′

k) est la fonction de répartition empirique associée à
l’échantillon U ′

1, . . . , U
′
n. Notons donc maintenant Fn(x) = 1

n

∑n
k=1 1]−∞,y](Uk).

Par la loi des grands nombres, on sait que pour tout réel x, la fonction de ré-
partition empirique Fn(x) converge presque sûrement vers F (x) = x.

On reconnait ici les conditions d’applications du théorème 1.5.2 de Dini–
Polyà : la convergence simple d’une suite de fonctions croissantes d’un inter-
valle [a, b] dans R vers une fonction continue sur [a, b] entraîne la convergence
uniforme, ce qui achève la preuve.

Remarque. Si on veut utiliser la convergence pour un seul x ou pour un en-
semble dénombrable de valeurs de x, il n’est pas nécessaire d’invoquer Glivenko-
Cantelli : la loi forte des grands nombres suffit.
Remarque. L’identité

{X(k) ≤ t} =
{

n∑
i=1

1[0,t](Xi) ≥ k

}
,

établie au cours de la preuve, permet également de calculer la loi de la statis-
tique d’ordre : comme les événements {Xi ≤ t} sont indépendants et de même
probabilité F (t), on a

P(X(k) ≤ t) = B(n, F (t))([k,+∞[)

=
n∑

i=k

(
n

i

)
F (t)i(1 − F (t))n−i.

Dans le cas où les Xk suivent la loi uniforme sur [0, 1], il n’est pas très
difficile, en dérivant la fonction de répartition, de vérifier que X(k) suit la loi
Beta de paramètres k et n+ 1 − k (exercice laissé au lecteur).


